↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, x, y) → eval(-@z(x, y), y)
Cond_eval2(TRUE, x, y) → eval(x, -@z(y, x))
Cond_eval3(TRUE, x, y) → eval(x, -@z(y, x))
Cond_eval1(TRUE, x, y) → eval(-@z(x, y), y)
eval(x, y) → Cond_eval1(&&(&&(>@z(x, y), >@z(x, 0@z)), >@z(y, 0@z)), x, y)
eval(x, y) → Cond_eval(&&(&&(&&(>@z(y, x), >@z(x, 0@z)), >@z(y, 0@z)), >@z(x, y)), x, y)
eval(x, y) → Cond_eval3(&&(&&(&&(>@z(y, x), >@z(x, 0@z)), >@z(y, 0@z)), >=@z(y, x)), x, y)
eval(x, y) → Cond_eval2(&&(&&(&&(>@z(x, y), >@z(x, 0@z)), >@z(y, 0@z)), >=@z(y, x)), x, y)
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, x, y) → eval(-@z(x, y), y)
Cond_eval2(TRUE, x, y) → eval(x, -@z(y, x))
Cond_eval3(TRUE, x, y) → eval(x, -@z(y, x))
Cond_eval1(TRUE, x, y) → eval(-@z(x, y), y)
eval(x, y) → Cond_eval1(&&(&&(>@z(x, y), >@z(x, 0@z)), >@z(y, 0@z)), x, y)
eval(x, y) → Cond_eval(&&(&&(&&(>@z(y, x), >@z(x, 0@z)), >@z(y, 0@z)), >@z(x, y)), x, y)
eval(x, y) → Cond_eval3(&&(&&(&&(>@z(y, x), >@z(x, 0@z)), >@z(y, 0@z)), >=@z(y, x)), x, y)
eval(x, y) → Cond_eval2(&&(&&(&&(>@z(x, y), >@z(x, 0@z)), >@z(y, 0@z)), >=@z(y, x)), x, y)
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
(1) -> (4), if ((y[1] →* y[4])∧(-@z(x[1], y[1]) →* x[4]))
(1) -> (5), if ((y[1] →* y[5])∧(-@z(x[1], y[1]) →* x[5]))
(2) -> (0), if ((y[2] →* y[0])∧(-@z(x[2], y[2]) →* x[0]))
(2) -> (3), if ((y[2] →* y[3])∧(-@z(x[2], y[2]) →* x[3]))
(2) -> (4), if ((y[2] →* y[4])∧(-@z(x[2], y[2]) →* x[4]))
(2) -> (5), if ((y[2] →* y[5])∧(-@z(x[2], y[2]) →* x[5]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(4) -> (7), if ((x[4] →* x[7])∧(y[4] →* y[7])∧(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])) →* TRUE))
(5) -> (2), if ((x[5] →* x[2])∧(y[5] →* y[2])∧(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])) →* TRUE))
(6) -> (0), if ((-@z(y[6], x[6]) →* y[0])∧(x[6] →* x[0]))
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(6) -> (4), if ((-@z(y[6], x[6]) →* y[4])∧(x[6] →* x[4]))
(6) -> (5), if ((-@z(y[6], x[6]) →* y[5])∧(x[6] →* x[5]))
(7) -> (0), if ((-@z(y[7], x[7]) →* y[0])∧(x[7] →* x[0]))
(7) -> (3), if ((-@z(y[7], x[7]) →* y[3])∧(x[7] →* x[3]))
(7) -> (4), if ((-@z(y[7], x[7]) →* y[4])∧(x[7] →* x[4]))
(7) -> (5), if ((-@z(y[7], x[7]) →* y[5])∧(x[7] →* x[5]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
(1) -> (4), if ((y[1] →* y[4])∧(-@z(x[1], y[1]) →* x[4]))
(1) -> (5), if ((y[1] →* y[5])∧(-@z(x[1], y[1]) →* x[5]))
(2) -> (0), if ((y[2] →* y[0])∧(-@z(x[2], y[2]) →* x[0]))
(2) -> (3), if ((y[2] →* y[3])∧(-@z(x[2], y[2]) →* x[3]))
(2) -> (4), if ((y[2] →* y[4])∧(-@z(x[2], y[2]) →* x[4]))
(2) -> (5), if ((y[2] →* y[5])∧(-@z(x[2], y[2]) →* x[5]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(4) -> (7), if ((x[4] →* x[7])∧(y[4] →* y[7])∧(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])) →* TRUE))
(5) -> (2), if ((x[5] →* x[2])∧(y[5] →* y[2])∧(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])) →* TRUE))
(6) -> (0), if ((-@z(y[6], x[6]) →* y[0])∧(x[6] →* x[0]))
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(6) -> (4), if ((-@z(y[6], x[6]) →* y[4])∧(x[6] →* x[4]))
(6) -> (5), if ((-@z(y[6], x[6]) →* y[5])∧(x[6] →* x[5]))
(7) -> (0), if ((-@z(y[7], x[7]) →* y[0])∧(x[7] →* x[0]))
(7) -> (3), if ((-@z(y[7], x[7]) →* y[3])∧(x[7] →* x[3]))
(7) -> (4), if ((-@z(y[7], x[7]) →* y[4])∧(x[7] →* x[4]))
(7) -> (5), if ((-@z(y[7], x[7]) →* y[5])∧(x[7] →* x[5]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 = 0∧0 = 0)
(6) (&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(7) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(8) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(10) (-1 + y[0] ≥ 0∧x[0] + -1 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(11) (y[0] ≥ 0∧x[0] + -1 ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(12) (y[0] ≥ 0∧1 + y[0] + x[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(13) (x[5]=x[2]∧&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5]))=TRUE∧y[5]=y[2] ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(-@z(x[2], y[2]), y[2])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(14) (>@z(x[5], y[5])=TRUE∧>@z(y[5], 0@z)=TRUE∧>@z(y[5], x[5])=TRUE∧>@z(x[5], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[5], y[5])≥NonInfC∧COND_EVAL(TRUE, x[5], y[5])≥EVAL(-@z(x[5], y[5]), y[5])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(15) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(16) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + x[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥))
(19) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 = 0∧0 = 0)
(23) (EVAL(x[4], y[4])≥NonInfC∧EVAL(x[4], y[4])≥COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])), ≥))
(24) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(25) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])), ≥))
(27) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])), ≥)∧0 ≥ 0)
(28) (EVAL(x[5], y[5])≥NonInfC∧EVAL(x[5], y[5])≥COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥))
(29) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(33) (y[3]=y[6]∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(34) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(35) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(36) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(37) (-1 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(38) (-2 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧x[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(39) (y[3] ≥ 0∧1 + x[3] + y[3] ≥ 0∧1 + y[3] ≥ 0∧x[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(40) (&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4]))=TRUE∧x[4]=x[7]∧y[4]=y[7] ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(x[7], -@z(y[7], x[7]))∧(UIncreasing(EVAL(x[7], -@z(y[7], x[7]))), ≥))
(41) (>=@z(y[4], x[4])=TRUE∧>@z(y[4], 0@z)=TRUE∧>@z(x[4], y[4])=TRUE∧>@z(x[4], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[4], y[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4])≥EVAL(x[4], -@z(y[4], x[4]))∧(UIncreasing(EVAL(x[7], -@z(y[7], x[7]))), ≥))
(42) (y[4] + (-1)x[4] ≥ 0∧-1 + y[4] ≥ 0∧-1 + x[4] + (-1)y[4] ≥ 0∧-1 + x[4] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], -@z(y[7], x[7]))), ≥)∧-1 + (-1)Bound ≥ 0∧-1 ≥ 0)
(43) (y[4] + (-1)x[4] ≥ 0∧-1 + y[4] ≥ 0∧-1 + x[4] + (-1)y[4] ≥ 0∧-1 + x[4] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], -@z(y[7], x[7]))), ≥)∧-1 + (-1)Bound ≥ 0∧-1 ≥ 0)
(44) (-1 + x[4] + (-1)y[4] ≥ 0∧-1 + y[4] ≥ 0∧y[4] + (-1)x[4] ≥ 0∧-1 + x[4] ≥ 0 ⇒ -1 + (-1)Bound ≥ 0∧-1 ≥ 0∧(UIncreasing(EVAL(x[7], -@z(y[7], x[7]))), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + (-1)x1
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(COND_EVAL(x1, x2, x3)) = -1 + (-1)x1
POL(FALSE) = 0
POL(>@z(x1, x2)) = -1
POL(COND_EVAL3(x1, x2, x3)) = -1 + (-1)x1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL2(x1, x2, x3)) = -1 + (2)x1
POL(EVAL(x1, x2)) = -1
POL(undefined) = -1
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(x[7], -@z(y[7], x[7]))
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(x[7], -@z(y[7], x[7]))
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])
COND_EVAL1(TRUE, x[1], y[1]) → EVAL(-@z(x[1], y[1]), y[1])
COND_EVAL(TRUE, x[2], y[2]) → EVAL(-@z(x[2], y[2]), y[2])
EVAL(x[3], y[3]) → COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])
EVAL(x[4], y[4]) → COND_EVAL2(&&(&&(&&(>@z(x[4], y[4]), >@z(x[4], 0@z)), >@z(y[4], 0@z)), >=@z(y[4], x[4])), x[4], y[4])
EVAL(x[5], y[5]) → COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])
COND_EVAL3(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], x[6]))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(1) -> (4), if ((y[1] →* y[4])∧(-@z(x[1], y[1]) →* x[4]))
(6) -> (5), if ((-@z(y[6], x[6]) →* y[5])∧(x[6] →* x[5]))
(1) -> (5), if ((y[1] →* y[5])∧(-@z(x[1], y[1]) →* x[5]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(6) -> (4), if ((-@z(y[6], x[6]) →* y[4])∧(x[6] →* x[4]))
(6) -> (0), if ((-@z(y[6], x[6]) →* y[0])∧(x[6] →* x[0]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(2) -> (5), if ((y[2] →* y[5])∧(-@z(x[2], y[2]) →* x[5]))
(2) -> (4), if ((y[2] →* y[4])∧(-@z(x[2], y[2]) →* x[4]))
(2) -> (0), if ((y[2] →* y[0])∧(-@z(x[2], y[2]) →* x[0]))
(5) -> (2), if ((x[5] →* x[2])∧(y[5] →* y[2])∧(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])) →* TRUE))
(2) -> (3), if ((y[2] →* y[3])∧(-@z(x[2], y[2]) →* x[3]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(6) -> (5), if ((-@z(y[6], x[6]) →* y[5])∧(x[6] →* x[5]))
(2) -> (5), if ((y[2] →* y[5])∧(-@z(x[2], y[2]) →* x[5]))
(6) -> (0), if ((-@z(y[6], x[6]) →* y[0])∧(x[6] →* x[0]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(1) -> (5), if ((y[1] →* y[5])∧(-@z(x[1], y[1]) →* x[5]))
(2) -> (0), if ((y[2] →* y[0])∧(-@z(x[2], y[2]) →* x[0]))
(5) -> (2), if ((x[5] →* x[2])∧(y[5] →* y[2])∧(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
(2) -> (3), if ((y[2] →* y[3])∧(-@z(x[2], y[2]) →* x[3]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
(1) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥))
(2) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(6) (x[5]=x[2]∧&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5]))=TRUE∧y[2]=y[3]∧y[5]=y[2]∧-@z(x[2], y[2])=x[3] ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(-@z(x[2], y[2]), y[2])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(7) (>@z(x[5], y[5])=TRUE∧>@z(y[5], 0@z)=TRUE∧>@z(y[5], x[5])=TRUE∧>@z(x[5], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[5], y[5])≥NonInfC∧COND_EVAL(TRUE, x[5], y[5])≥EVAL(-@z(x[5], y[5]), y[5])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(8) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(9) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(10) (-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] + (-1)y[5] ≥ 0∧-1 + x[5] ≥ 0∧-1 + y[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 ≥ 0∧-2 + (-1)Bound ≥ 0)
(11) (x[5]=x[2]∧&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5]))=TRUE∧-@z(x[2], y[2])=x[0]∧y[5]=y[2]∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(-@z(x[2], y[2]), y[2])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(12) (>@z(x[5], y[5])=TRUE∧>@z(y[5], 0@z)=TRUE∧>@z(y[5], x[5])=TRUE∧>@z(x[5], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[5], y[5])≥NonInfC∧COND_EVAL(TRUE, x[5], y[5])≥EVAL(-@z(x[5], y[5]), y[5])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(13) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(14) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(15) (-1 + x[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(16) (y[2]=y[5]1∧x[5]=x[2]∧&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5]))=TRUE∧y[5]=y[2]∧-@z(x[2], y[2])=x[5]1 ⇒ COND_EVAL(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2])≥EVAL(-@z(x[2], y[2]), y[2])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(17) (>@z(x[5], y[5])=TRUE∧>@z(y[5], 0@z)=TRUE∧>@z(y[5], x[5])=TRUE∧>@z(x[5], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[5], y[5])≥NonInfC∧COND_EVAL(TRUE, x[5], y[5])≥EVAL(-@z(x[5], y[5]), y[5])∧(UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥))
(18) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(19) (-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(20) (-1 + x[5] ≥ 0∧-1 + y[5] + (-1)x[5] ≥ 0∧-1 + x[5] + (-1)y[5] ≥ 0∧-1 + y[5] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[2], y[2]), y[2])), ≥)∧-2 + (-1)Bound ≥ 0∧-2 ≥ 0)
(21) (EVAL(x[5], y[5])≥NonInfC∧EVAL(x[5], y[5])≥COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥))
(22) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧0 ≥ 0∧1 ≥ 0)
(23) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧0 ≥ 0∧1 ≥ 0)
(24) (1 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥))
(25) (0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])), ≥)∧1 ≥ 0∧0 = 0∧0 = 0)
(26) (y[1]=y[0]1∧-@z(x[1], y[1])=x[0]1∧&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(27) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(28) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) (x[0] + -1 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(31) (x[0] + -1 ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(32) (x[0] ≥ 0∧-1 + x[0] + (-1)y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(33) (1 + y[0] + x[0] ≥ 0∧x[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(34) (&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧y[1]=y[5]∧-@z(x[1], y[1])=x[5]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(35) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(36) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(37) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (x[0] + -1 ≥ 0∧-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(39) (x[0] + -1 ≥ 0∧y[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(40) (1 + y[0] + x[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(41) (y[1]=y[3]∧-@z(x[1], y[1])=x[3]∧&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(42) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(43) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(44) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) (-1 + y[0] ≥ 0∧x[0] + -1 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(46) (y[0] ≥ 0∧x[0] + -1 ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(47) (y[0] ≥ 0∧1 + y[0] + x[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0)
(48) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(49) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(50) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(51) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(52) (0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 = 0∧0 = 0)
(53) (y[3]=y[6]∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE∧-@z(y[6], x[6])=y[5]∧x[6]=x[5] ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(54) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(55) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(56) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(57) (-1 + y[3] + (-1)x[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0)
(58) (-2 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧x[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0)
(59) (y[3] ≥ 0∧1 + y[3] ≥ 0∧x[3] ≥ 0∧1 + x[3] + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0)
(60) (y[3]=y[6]∧-@z(y[6], x[6])=y[3]1∧x[6]=x[3]1∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(61) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(62) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(63) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(64) (-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(65) (-2 + y[3] + (-1)x[3] ≥ 0∧x[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(66) (y[3] ≥ 0∧x[3] ≥ 0∧1 + y[3] ≥ 0∧1 + x[3] + y[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(67) (y[3]=y[6]∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE∧-@z(y[6], x[6])=y[0]∧x[6]=x[0] ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(68) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(69) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(70) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0∧0 ≥ 0)
(71) (-1 + x[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0)
(72) (x[3] ≥ 0∧-2 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0)
(73) (x[3] ≥ 0∧y[3] ≥ 0∧1 + x[3] + y[3] ≥ 0∧1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL3(x1, x2, x3)) = 1 + (2)x1
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = 1 + (2)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3)) = -1 + x1
POL(EVAL(x1, x2)) = -1
POL(FALSE) = -1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[2], y[2]) → EVAL(-@z(x[2], y[2]), y[2])
COND_EVAL(TRUE, x[2], y[2]) → EVAL(-@z(x[2], y[2]), y[2])
EVAL(x[3], y[3]) → COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])
EVAL(x[5], y[5]) → COND_EVAL(&&(&&(&&(>@z(y[5], x[5]), >@z(x[5], 0@z)), >@z(y[5], 0@z)), >@z(x[5], y[5])), x[5], y[5])
COND_EVAL1(TRUE, x[1], y[1]) → EVAL(-@z(x[1], y[1]), y[1])
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])
COND_EVAL3(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], x[6]))
&&(FALSE, FALSE)1 → FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(FALSE, TRUE)1 → FALSE1
&&(TRUE, FALSE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(6) -> (5), if ((-@z(y[6], x[6]) →* y[5])∧(x[6] →* x[5]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(6) -> (0), if ((-@z(y[6], x[6]) →* y[0])∧(x[6] →* x[0]))
(1) -> (5), if ((y[1] →* y[5])∧(-@z(x[1], y[1]) →* x[5]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(6) -> (0), if ((-@z(y[6], x[6]) →* y[0])∧(x[6] →* x[0]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
(1) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥))
(2) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0)
(5) (0 = 0∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(6) (y[1]=y[0]1∧-@z(x[1], y[1])=x[0]1∧&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(7) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(8) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧-1 + y[0] ≥ 0)
(9) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧-1 + y[0] ≥ 0)
(10) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧-1 + y[0] ≥ 0)
(11) (y[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧y[0] ≥ 0)
(12) (y[0] ≥ 0∧-1 + x[0] + (-1)y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧y[0] ≥ 0)
(13) (y[0] ≥ 0∧x[0] ≥ 0∧1 + y[0] + x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧y[0] ≥ 0)
(14) (y[1]=y[3]∧-@z(x[1], y[1])=x[3]∧&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(15) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(16) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧-1 + y[0] ≥ 0)
(17) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧0 ≥ 0∧-1 + y[0] ≥ 0)
(18) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧-1 + y[0] ≥ 0∧0 ≥ 0)
(19) (x[0] + -2 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧y[0] ≥ 0∧0 ≥ 0)
(20) (-1 + x[0] + (-1)y[0] ≥ 0∧x[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧y[0] ≥ 0∧0 ≥ 0)
(21) (x[0] ≥ 0∧1 + y[0] + x[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧y[0] ≥ 0∧0 ≥ 0)
(22) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(23) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(25) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(26) (0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 = 0)
(27) (y[3]=y[6]∧-@z(y[6], x[6])=y[3]1∧x[6]=x[3]1∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(28) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(29) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧-1 + (-1)Bound + y[3] + x[3] ≥ 0∧x[3] ≥ 0)
(30) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧-1 + (-1)Bound + y[3] + x[3] ≥ 0∧x[3] ≥ 0)
(31) (-1 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧-1 + (-1)Bound + y[3] + x[3] ≥ 0)
(32) (-2 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧x[3] ≥ 0 ⇒ 1 + x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧(-1)Bound + y[3] + x[3] ≥ 0)
(33) (-1 + y[3] ≥ 0∧x[3] + y[3] ≥ 0∧y[3] ≥ 0∧x[3] ≥ 0 ⇒ 1 + x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧1 + (-1)Bound + (2)x[3] + y[3] ≥ 0)
(34) (y[3] ≥ 0∧1 + x[3] + y[3] ≥ 0∧1 + y[3] ≥ 0∧x[3] ≥ 0 ⇒ 1 + x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧2 + (-1)Bound + (2)x[3] + y[3] ≥ 0)
(35) (y[3]=y[6]∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE∧-@z(y[6], x[6])=y[0]∧x[6]=x[0] ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(36) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(37) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧-1 + (-1)Bound + y[3] + x[3] ≥ 0∧x[3] ≥ 0)
(38) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧-1 + (-1)Bound + y[3] + x[3] ≥ 0∧x[3] ≥ 0)
(39) (-1 + y[3] ≥ 0∧-1 + x[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0 ⇒ -1 + (-1)Bound + y[3] + x[3] ≥ 0∧x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(40) (-1 + y[3] ≥ 0∧x[3] ≥ 0∧-2 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0 ⇒ (-1)Bound + y[3] + x[3] ≥ 0∧1 + x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(41) (x[3] + y[3] ≥ 0∧x[3] ≥ 0∧-1 + y[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 + (-1)Bound + (2)x[3] + y[3] ≥ 0∧1 + x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(42) (1 + x[3] + y[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0∧1 + y[3] ≥ 0 ⇒ 2 + (-1)Bound + (2)x[3] + y[3] ≥ 0∧1 + x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL3(x1, x2, x3)) = -1 + x3 + x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + x3 + x2 + x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2)) = -1 + x2 + x1
POL(FALSE) = -1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])
COND_EVAL3(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], x[6]))
EVAL(x[3], y[3]) → COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])
COND_EVAL1(TRUE, x[1], y[1]) → EVAL(-@z(x[1], y[1]), y[1])
COND_EVAL3(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], x[6]))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], y[1]) →* x[0]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
(1) (y[1]=y[0]1∧-@z(x[1], y[1])=x[0]1∧&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL1(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1])≥EVAL(-@z(x[1], y[1]), y[1])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(2) (>@z(y[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(x[0], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(-@z(x[0], y[0]), y[0])∧(UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥))
(3) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧-1 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(4) (-1 + y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧-1 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(5) (x[0] + -1 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧-1 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(6) (x[0] + -1 ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧-2 + (-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧(2)y[0] ≥ 0)
(7) (x[0] ≥ 0∧-1 + x[0] + (-1)y[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧(-1)Bound + (-1)y[0] + (2)x[0] ≥ 0∧(2)y[0] ≥ 0)
(8) (1 + y[0] + x[0] ≥ 0∧x[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], y[1]), y[1])), ≥)∧2 + (-1)Bound + y[0] + (2)x[0] ≥ 0∧(2)y[0] ≥ 0)
(9) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(10) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = (-1)x3 + (2)x2 + (-1)x1
POL(TRUE) = 1
POL(&&(x1, x2)) = 0
POL(EVAL(x1, x2)) = 1 + (-1)x2 + (2)x1
POL(FALSE) = 2
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(x[0], y[0]), >@z(x[0], 0@z)), >@z(y[0], 0@z)), x[0], y[0])
COND_EVAL1(TRUE, x[1], y[1]) → EVAL(-@z(x[1], y[1]), y[1])
COND_EVAL1(TRUE, x[1], y[1]) → EVAL(-@z(x[1], y[1]), y[1])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], y[1]) →* x[3]))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(6) -> (3), if ((-@z(y[6], x[6]) →* y[3])∧(x[6] →* x[3]))
(3) -> (6), if ((x[3] →* x[6])∧(y[3] →* y[6])∧(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])) →* TRUE))
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
(1) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥))
(2) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 ≥ 0)
(5) (0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(6) (y[3]=y[6]∧-@z(y[6], x[6])=y[3]1∧x[6]=x[3]1∧x[3]=x[6]∧&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3]))=TRUE ⇒ COND_EVAL3(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL3(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], x[6]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(7) (>=@z(y[3], x[3])=TRUE∧>@z(y[3], 0@z)=TRUE∧>@z(y[3], x[3])=TRUE∧>@z(x[3], 0@z)=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3])≥EVAL(x[3], -@z(y[3], x[3]))∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥))
(8) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧(-1)Bound + (2)y[3] + (-1)x[3] ≥ 0∧-2 + (2)x[3] ≥ 0)
(9) (y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧(-1)Bound + (2)y[3] + (-1)x[3] ≥ 0∧-2 + (2)x[3] ≥ 0)
(10) (-1 + y[3] + (-1)x[3] ≥ 0∧y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + x[3] ≥ 0 ⇒ -2 + (2)x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧(-1)Bound + (2)y[3] + (-1)x[3] ≥ 0)
(11) (-2 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] + (-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧x[3] ≥ 0 ⇒ (2)x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧-1 + (-1)Bound + (2)y[3] + (-1)x[3] ≥ 0)
(12) (y[3] ≥ 0∧1 + y[3] ≥ 0∧1 + x[3] + y[3] ≥ 0∧x[3] ≥ 0 ⇒ (2)x[3] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], x[6]))), ≥)∧3 + (-1)Bound + x[3] + (2)y[3] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL3(x1, x2, x3)) = (2)x3 + (-1)x2
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = 2
POL(EVAL(x1, x2)) = 1 + (2)x2 + (-1)x1
POL(FALSE) = 2
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[3], y[3]) → COND_EVAL3(&&(&&(&&(>@z(y[3], x[3]), >@z(x[3], 0@z)), >@z(y[3], 0@z)), >=@z(y[3], x[3])), x[3], y[3])
COND_EVAL3(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], x[6]))
COND_EVAL3(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], x[6]))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval(TRUE, x0, x1)
Cond_eval2(TRUE, x0, x1)
Cond_eval3(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)